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Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75231 Paris cedex 05, France
2Laboratoire de Physique Statistique, UMR 8550 CNRS, Ecole Normale Supérieure, 24 rue Lhomond,

75231 Paris cedex 05, France
3Ecole Nationale des Ponts et Chaussées, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne,
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For the Saffman–Taylor instability, the inertia of the fluid may become important for
high finger speeds. We investigate the effects of inertia on the width of the viscous
fingers experimentally. We find that, due to inertia, the finger width can increase
with increasing speed, contrary to what happens at small Reynolds number Re. We
find that inertial effects need to be considered above a critical Weber number We.
In this case it can be shown that the finger width is governed by a balance between
viscous forces and inertia. This allows us to define a modified control parameter 1/B ′,
which takes the corrections due to inertia into account; on rescaling the experimental
data with 1/B ′, they all collapse onto the universal curve for the classical Saffman–
Taylor instability. Subsequently, we try to rationalize our observations. Numerical
simulations, taking into account a modification of Darcy’s law to include inertia,
are found to only qualitatively reproduce the experimental findings, pointing to the
importance of three-dimensional effects.

1. Introduction
Viscous fingering has received much attention as an archetype of pattern-formation

problems and as a limiting factor in the recovery of crude oil (see Saffman & Taylor
1958; Bensimon et al. 1986; Homsy 1987; Couder 1991). Viscous fingers form in
a thin linear channel or Hele-Shaw cell when a fluid pushes a more viscous fluid.
The interface between the fluids develops an instability leading to the formation of
finger-like patterns. The viscous fingering instability has been studied extensively over
the past few decades, both theoretically and experimentally.

For the classical Saffman–Taylor instability the width of the finger is governed by
the competition between viscous and capillary forces: viscous forces tend to narrow
the finger whereas capillary forces tend to widen it. When air pushes a viscous fluid,
as is usually the case, the relative finger width is thus determined by the capillary
number Ca = ηU/γ (with η the fluid viscosity, U the velocity and γ the surface
tension), the ratio between viscous and capillary forces. In the vast majority of cases
that have been studied so far, inertial forces are negligible. The importance of inertia
is determined by the relative importance of the inertial and viscous forces, quantified
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Figure 1. Schematic drawing of the experimental set-up.

by the Reynolds number Re = ρUb/η, with ρ the fluid density, and b the plate spacing
of the Hele-Shaw cell in which the experiments are conducted. In most studies of
the instability, b is small, and the fluids considered both in applications as well as
in experimental studies are typically high-viscosity oils. This automatically leads to
small Reynolds numbers (Re � 1), so that inertial effects may be neglected.

More recently viscous fingering has been studied in non-Newtonian fluids using for
example polymer solutions (see Smith et al. 1992; Bonn et al. 1995; Lindner, Bonn &
Meunier 2000; Vlad & Maher 2000; Kawaguchi, Hibino & Kato 2001; Lindner et al.
2002). For the dilute polymer solutions used in a number of these studies, the shear
viscosity of the water-based solutions is typically close to the water viscosity, and
consequently the Reynolds number may – and does – become larger than unity. This
means that inertia may become important, and needs to be disentangled from the
observed non-Newtonian flow effects. Also recently, corrections to Darcy’s law have
been developed incorporating inertial effects (see Gondret & Rabaud 1997; Ruyer-
Quil 2001). Darcy’s law relates the pressure gradient to the fluid velocity and is one
of the fundamental equations of the Saffman–Taylor instability; if inertial corrections
could simply be included in a modified Darcy’s law, this would greatly facilitate the
understanding of the effect of inertia on the instability. These recent developments
suggest that a better understanding of the Newtonian fingering instability for high
Reynolds numbers is both necessary and feasible.

In this paper we explore the Saffman–Taylor instability for Newtonian fluids for
Reynolds numbers up to Re = 100. To do so, we use low-viscosity silicone oils, pushed
by air. The paper is organized as follows. In § 2 we will recall the basic equations for
the Saffman–Taylor instability and introduce the corrections due to inertia. Section 3
describes the set-up and experimental methods. In § 4 the experimental results
concerning the finger widths as well as the validity of Darcy’s law are presented
and discussed. In § 5 we will introduce some theoretical elements as well as numerical
simulation and compare them to the experimental results. Section 6 gives a summary
of the obtained results.

2. Theory and equations
2.1. Presentation and review of classical Saffman–Taylor instability

We study the Saffman–Taylor instability in a thin linear channel or Hele-Shaw cell
(see figure 1). The width of the cell W is chosen to be large compared to the channel
thickness b and we thus work with high aspect ratios W/b. The cell is filled with a
viscous fluid which is subsequently pushed by air. The viscosity and the density of air
will be neglected throughout the paper.

When air pushes the viscous fluid due to an imposed pressure gradient ∇P , initially
flat interface between the two fluids destabilizes. This destabilization leads to the
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formation of a so-called viscous finger; in steady state a stationary finger of width
w propagating at a velocity U is found to occupy a fraction of the cell width: the
relative finger width is defined as λ= w/W .

For Newtonian fluids, the motion of a fluid in the Hele-Shaw cell is described by
the two-dimensional velocity field u averaged through the thickness of the cell. It is
given by Darcy’s law, which relates the local pressure gradient to the velocity within
the fluid as

u = − b2

12η
∇p. (2.1)

It follows immediately that, if the fluid is incompressible, the pressure field satisfies
Laplace’s equation:

�p = 0. (2.2)

The pressure field is calculated within the driven fluid, together with a pressure
jump over the interface due to the surface tension:

δp = γ /R, (2.3)

with R the radius of curvature of the interface, again employing a two-dimensional
approximation, as was justified in the limit of small capillary numbers by Park &
Homsy (1984), and Reinelt & Saffman (1985).

The other boundary conditions are the continuity condition, which implies that the
normal velocity at both sides of the interface is equal:

U · n = u · n, (2.4)

with n being the normal vector to the interface, and a far-field value for the pressure.
Supplemented with these boundary conditions, (2.1), (2.2) and (2.3) constitute the
complete set of equations to be solved in order to obtain the complete finger shape
for a given pressure gradient; and thus also its width.

For characterizing the instability quantitatively most studies have focused on the
width of the finger w relative to the channel width W , λ= w/W , as a function of
the finger velocity. It follows from the above that the finger width is determined
by the capillary number; one thus anticipates that the relative width of the viscous
fingers decreases with increasing finger velocity. This is indeed what is observed
experimentally; in addition, for very large values of Ca , λ does not go to zero but
reaches a limiting value of about half the channel width. It also follows from the
boundary conditions and (2.1) to (2.3) that the control parameter for the fingering
problem is 1/B = 12(W/b)2Ca with W/b the aspect ratio of the Hele-Shaw cell. When
scaled on 1/B , measurements of λ for different systems all fall on the same universal
curve. In the ideal, Newtonian, two-dimensional situation 1/B is consequently the
only parameter that determines the finger width (see Saffman & Taylor 1958; McLean
& Saffman 1981; Combescot et al. 1986; Hong & Langer 1986; Shraiman 1986).

2.2. Corrections of Darcy’s law due to inertia

When inertial forces have to be taken into account, both the Reynolds number
Re = ρUb/η and the Weber number We = ρU 2b/γ (the ratio of inertial forces to
capillarity forces) become important. We will now, as a first step, discuss how
corrections due to inertia can be included in Darcy’s law.

Modifications of Darcy’s law were first proposed by Gondret & Rabaud (1997)
for parallel flow in a Hele-Shaw cell: they establish corrections by averaging inertia
in the third dimension, i.e. they average over the direction of the plate spacing b,



86 C. Chevalier, M. Ben Amar, D. Bonn and A. Lindner

allowing them to derive a new nonlinear two-dimensional equation for the velocity
field. Ruyer-Quil (2001) suggests an improved correction starting from the three-
dimensional Navier–Stokes equation. Inertial corrections are introduced in a
perturbative fashion; using in addition a polynomial approximation to the velocity
field, Ruyer-Quil proposes a modified two-dimensional Darcy’s law of the form:

ρ

(
α

∂u
∂t

+ βu · ∇u
)

= −∇p − 12η

b2
u, (2.5)

with α = 6/5 and β = 54/35 and u the depth-averaged velocity. Plouraboue & Hinch
(2002) also calculated inertial corrections to Darcy’s law and arrived at a similar
type of equation, but with slightly different coefficients. This equation leads to a
better agreement between the linear stability analysis and the experimental data of
Gondret & Rabaud for the Kelvin–Helmholtz instability up to not too large Reynolds
numbers. The values of α and β may vary depending on the way the averaging in
the third dimension is done, but are always of order of 1.

Scaling length on W , time on W/U and pressure on 12ηUW/b2 gives the following
dimensionless equation:

Re∗
(

α
∂u∗

∂t∗ + βu∗ · ∇∗u∗
)

= −∇∗p∗ − u∗, where Re∗ =
1

12

b

W

ρUb

η
=

b

12W
Re.

(2.6)

Re∗ is a modified Reynolds number, in the same way as the classical control parameter
of the Saffman–Taylor instability 1/B is a modified capillary number.

We can also introduce another number describing the relative importance of inertia
and capillarity in the geometry of the Hele-Shaw, a modified Weber number:

We∗ =
ρU 2W

γ
=

W

b
We. (2.7)

One important remark is that if one considers stationary and spatially uniform
two-dimensional flow in our Hele-Shaw cell, it follows from (2.5) that there are no
corrections due to inertia, since ∂u/∂t and u · ∇ u are both zero. This will be the case
in our fingering experiments far away from the moving interface and leads to the
classical Darcy law; we thus anticipate that it might remain valid even for relatively
high Re.

3. Experimental
We use a linear Hele-Shaw cell consisting of two glass plates separated by a thin

Mylar spacer. The plates are horizontal and clamped together in order to obtain a
regular thickness b of the channel. The thickness of the glass plates is chosen to be
2 cm in order to avoid any bending. The aspect ratio of the channel can be varied;
we worked with different plate spacings b and widths W , the length of the channel
always being 1 m. The cell is filled with silicone oil and compressed air is used as the
less-viscous driving fluid.

The silicone oils used were Rhodorsil 47V05, 47V10, 47V20 and 47V100 from
Rhodia Silicones. Rheological measurements on a Reologica Stress-Tech rheometer
confirmed the values of the viscosities η of 5, 10, 20 and 100 mPa s respectively,
with no deviations larger than 4 %. We also used 47V02, with viscosity measured
to be 2.8 mPa s. The surface tension γ and the density ρ of the silicone oils are
19.5 ± 1 mN m−1 and 0.95 ± 0.03 10−3 kgm−3 as given by Rhodia Silicones.
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Thickness b Width W Aspect ratio W/b

Geometry 1 0.25mm 40mm 160
Geometry 2 0.75mm 80mm 107
Geometry 3 0.75mm 40mm 53
Geometry 4 1.43mm 40mm 28

Table 1. Different cell geometries used in our experiments.

The fingers were driven by applying a constant pressure drop �p = pi −po between
the inlet and the outlet of the cell. Depending on the order of magnitude of the
applied pressure drop two methods were used. For �p larger than 3000 Pa we used
compressed air and a pressure transducer at the entrance of the cell to fix pi at
the inlet of the cell. In this case, the outlet was maintained at atmospheric pressure
po =patm by an oil reservoir coupled to the cell. For �p smaller than 3000 Pa, we
obtained the pressure drop by lowering the oil reservoir at the outlet of the cell by
a given distance, determining in this way po. In this case the inlet was maintained at
atmospheric pressure pi =patm.

The fingers were captured by a CCD camera, coupled to a data acquisition card
(National Instruments) and a computer. This allowed measurements of the relative
width λ= w/W as a function of the velocity U of the finger tip. For each configuration
(cell geometry and fluid viscosity) several experimental runs (between 10 and 20) were
performed increasing the applied pressure drop and thus the finger velocity until
destabilization of the finger occurred; all the finger widths reported here correspond
to stable fingers.

In order to access high Reynolds numbers we not only varied the velocity of the
finger and the viscosity of the fluid but also the thickness of the channel. We have
thus worked with different channel geometries that are summarized in table 1.

The aspect ratio W/b varies from 28 (geometry 4) to 160 (geometry 1). Even though
an aspect ratio of 28 is rather small it is sufficient to consider the experiment as being
quasi-two-dimensional. It was observed that the results obtained for the high-viscosity
fluids (and thus a situation where inertial effects can be neglected) show very little
difference in finger widths. The small difference is due to film effects (see Tabeling &
Libchaber 1986), as will be discussed in more detail below.

Experiments were performed in all geometries for the silicon oils 47V05, 47V10 and
47V20. The Silicon oil 47V02 was tested in geometries 2 and 3, whereas the silicon oil
47V100 was used in geometries 3 and 4. Finally, note that typical values of capillary
number Ca in the experiments are between 0.01 (for V02) and 0.5 (for V100).

4. Presentation of the results
4.1. Darcy’s law

Assuming the flow far away from a finger to be uniform, we expect that the classical
Darcy law linking the gap-averaged fluid velocity V to the imposed pressure gradient
∇P in our Hele-Shaw cell remains valid for all of our experiments:

V = − b

12η
∇P. (4.1)
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Figure 2. Velocity as a function of the applied pressure gradient for all viscosities (V02, V05,
V10, V20 and V100) and different cell geometries: •, b = 1.43 mm W = 4 cm; ×, b = 0.75 mm
W = 4 cm; �, b = 0.75 mm W =8 cm; +, b = 0.25 mm W = 4 cm.

Mass conservation allows the velocity V of the fluid far away from the interface
to be obtained from the measured finger velocity U simply by using V = λU , if one
neglects the thin wetting film left on the glass plates behind the finger. The imposed
pressure gradient is calculated from ∇P =�p/L where �p is the measured applied
pressure drop and L the distance between the finger tip and the exit of the cell.

In our experiments we reach high finger velocities and thus high capillary numbers
Ca . The influence of the thin wetting film left on the plates may therefore become
important and can no longer be neglected. It is taken into account using V = λU (1 −
2t/b), where t is the thickness of the wetting film, which we estimate using the
empirical result of Tabeling & Libchaber (1986) and Tabeling, Zocchi & Libchaber
(1987):

t = κb[1 − exp(−γW/b)][1 − exp(−βCa2/3)], (4.2)

with κ ≈ 0.119, γ ≈ 0.038 and β ≈ 8.58. For our data, the correction 2t/b varies from
0.02 to 0.2. Note that this simple correction does not take into account an eventual
modification of the film thickness by inertia. However it already improves the fit of
the data significantly.

In this way, we can thus test the validity of Darcy’s law. Figure 2 shows the
velocity V represented as a function of (b/12η)∇P for the different cell geometries
and viscosities used. The dashed line represents the linear relation with slope unity
expected from (4.1). We therefore conclude that the data are in excellent agreement
with the classical Darcy law. This result holds even for high velocities where a
significant effect of the inertial forces is observed on the width of the fingers, as will
be discussed below. We have thus shown that for the range of Re tested in this paper
there is, as was anticipated above, no effect of inertia on Darcy’s law when considering
the uniform flow far away from the finger. Note that this does not automatically
imply that there are no corrections to the local relation between ∇p and the velocity
near the finger tip.
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Figure 3. Results for the finger width λ as a function of the classical control parameter 1/B :
(a) for the geometry with b = 0.75mm and W = 4 cm and different fluids: •, V02; ×, V05;
�, V10; + V20; �, V100. (b) for the V05 fluid and different cell geometries: •, b = 1.43 mm
W = 4 cm; ×, b = 0.75 mm W = 4 cm; �, b = 0.75 mm W = 8 cm; +, b = 0.25 mm W = 4 cm.

4.2. Finger width

4.2.1. Relative finger width as a function of the classical control parameter

Figures 3(a) and 3(b) represent the relative finger width as a function of the classical
control parameter 1/B when varying the viscosity of the fluid for a given geometry –
b = 0.75 mm, W = 4 cm, figure 3(a) – and when changing the geometry of the cell for a
given fluid, silicon oil 47V05, figure 3(b). These figures show for low 1/B the classical
decrease of the finger width with increasing 1/B . However at a given value of 1/B
which is different for different configurations, an increase of the relative finger width
is observed. This surprising observation systematically appears at high Reynolds
numbers, and we conclude that it must be related to inertial effects. Indeed, for a
given geometry, only the fluid of highest viscosity gives results that agree with the
classical Saffman–Taylor instability. In addition, deviations from the classical results
arise at smaller 1/B for lower fluid viscosity. Finally, the data for a fixed viscosity
but varying geometry (figure 3b) show that the increase of the finger width occurs
for lower 1/B for a channel with a larger plate spacing. All these observations agree
with the suggestion that the increase in finger width with increasing velocity is due
to inertial effects.

Comparing the data for a fixed gap thickness (b = 0.75 mm) and two different
channel widths (W = 4 and W =8 cm) in figure 3(b), we conclude that the crossover
value of 1/B also depends on the channel width W : it is observed to be smaller
for smaller channel widths. This is still consistent with an increase of the Reynolds
numbers (Re and Re∗): at a given 1/B and fixed η and b, a decrease of the channel
width W leads to an increase of Re. This follows from the observation that W 2U is
fixed and consequently Re varies as 1/W (Re∗ as 1/W 3).

We conclude that due to inertia our experimental results deviate from the classical
results: we observe a regime of increasing finger width. This increase occurs at lower
1/B for lower viscosity, larger gap thickness or smaller gap width. It is also important
to note that strong inertial effects are already observed at velocities below 0.08 m s−1

for all of our experiments and that even if strong changes in the behaviour are
observed for the finger width, no deviations from the classical Darcy law are observed
in this regime (figure 2).
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Figure 4. Results for the finger width λ as a function of (a) the modified Reynolds number
Re∗and (b) the modified Weber number We∗, for the geometry with b =0.75mm and W = 4 cm
and different fluids: •, V02; ×, V05; �, V10; + V20; �, V100.

We will now study the deviation from the classical result as a function of the
modified Reynolds number Re∗. For concreteness, in the following we will focus on
the data obtained when varying the viscosity for a given geometry (b = 0.75 mm,
W = 4 cm). The results however are general and apply to the data from other
experiments as well.

4.2.2. Relative finger width as function of the modified Reynolds number Re∗

In figure 4(a), we plot the relative finger width as a function of the modified
Reynolds number Re∗. The first observation is that the minimum of the curves (that
signals the deviation from the classical results) is not fixed at the same value of Re∗.
On the other hand for high Re∗ all the curves tend towards a single master curve:
the behaviour of the finger width seems to be governed by Re∗ only. Data in other
configurations (not shown here) confirm the existence of a universal λ–Re∗curve for
high Re∗.

4.2.3. Relative finger width as a function of the modified Weber number We∗

So far we can distinguish between two limiting cases. For low velocities, the results
for the relative finger width fall on the universal curve of the classical Saffman–Taylor
instability: they rescale with 1/B . For high values of velocity, a second universal curve
exists and the data rescale with Re∗. This suggests that the crossover between the two
regimes may be given by the modified Weber number, combining Re∗ and 1/B :

We∗ = Re∗1/B =
ρU 2W

γ
=

W

b
We. (4.3)

The experimental data support this conclusion. Figure 4(b) depicts the relative finger
width as a function of the modified Weber number We∗. All experimental curves have
a minimum located at the same value of We∗, at around We∗

c ≈ 15, separating the two
limiting behaviours.

Note that, although We∗ governs the crossover, we observe no regime where the
finger width is determined by a competition between capillary forces and inertia.
In fact, when considering the dependence of the different forces on the velocity
one finds that capillary forces scale as U 0, viscous forces as U 1 and inertial forces
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Figure 5. Results for the finger width λ (same data as figure 3a) as a function of the modified
control parameter 1/B ′, for the geometry with b = 0.75mm and W = 4 cm and different fluids:
•, V02; ×, V05; �, V10; + V20; �, V100. (Inset: same data, but over a larger range of 1/B ′.)

as U 2. Consequently, the dominating forces at low velocity should be capillary
and viscous forces (control parameter 1/B ) and at high velocity, viscous forces
versus inertia (control parameter Re∗). This simple argument therefore explains that
as a function of the velocity there is no regime where the finger width is given
by We∗.

4.2.4. Extension to a new global master curve

It follows that the parameter We∗ ( = Re∗ 1/B ), that can be seen as the ratio between
1/B and 1/Re∗, gives the relative importance of the two parameters with a crossover
given by the critical value We∗

c ≈ 15.
We can thus attempt to define a modified control parameter taking this crossover

into account:

1/B ′ = 1/B

(
1

1 + We∗/We∗
c

)
. (4.4)

It is easy to see that this parameter tends to 1/B for low We∗ (We∗ <We∗
c) and

towards We∗
c/Re∗ for large We∗ (We∗ > We∗

c).
Figure 5 shows the experimental data already shown on figure 3(a), however now

λ is plotted as a function of 1/B ′ for We∗
c =15. The experimental data scale on

a single universal curve when represented as a function of the modified control
parameter. Moreover, and perhaps more surprisingly, this curve is identical to the
classical result of McLean & Saffman (1981) on viscous fingering, experimentally
represented by the data obtained for the most viscous oil where inertia plays no role.
Note that when representing the data as a function of 1/B ′ they are folded back onto
themselves.

Figures 6(a) and 6(b) summarize our results. On figure 6(a), all geometries and
fluids are depicted, representing the relative finger width as a function of the classical
control parameter 1/B . Note that these data are obtained by varying not only the fluid
viscosity but also the cell geometry by changing both the channel width and thickness.
On figure 6(b), the same data are plotted as a function of 1/B ′, our modified control
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Figure 6. Results for the finger width λ as a function of (a) the classical control parameter
1/B and (b) the modified control parameter 1/B ′ for all viscosities (V02, V05, V10, V20 and
V100) and different cell geometries: •, b =1.43mm, W = 4 cm; ×, b = 0.75mm, W =4 cm; �,
b = 0.75 mm, W = 8 cm; +, b = 0.25mm, W = 4 cm.

parameter, again for We∗
c = 15. We observe that the entire data set collapses very well

onto a single master curve. Once again this curve is identical to the classical result of
McLean & Saffman (1981).

So far we have not discussed the influence of the aspect ratio on the relative
finger width. Even if the influence is small, it might explain why we observe slight
differences between the four different cell geometries (see figure 6b). In contrast, when
considering one single channel geometry the data do collapse (see figure 5). If one also
notes that these differences can be observed where inertia is negligible, the conclusion
must be that the slight residual differences are due to film effects. These effects are
also responsible for the slight decrease of the finger width below λ= 0.5 (see Tabeling
et al. 1987) observed on figure 6(b).

The physical interpretation of our results is then the following. The modified
control parameter 1/B ′ gives the crossover between the 1/B and Re∗ regimes. For
small We∗, 1/B is the control parameter, and the main forces are surface tension
and viscous forces, leading to a narrowing of the fingers as viscous forces become
more important for higher speeds. For higher velocities (We∗ >We∗

c), the main forces
acting are viscous forces and inertia. The competition between these forces results in
a widening of the fingers with increasing velocity. The observation is therefore that
inertia tends to widen the fingers; this seems logical intuitively, as the inertia will tend
to slow down the finger at a given flow rate, leading to wider fingers. As the effect of
the inertial forces is similar to that of the capillary forces, in the sense that both tend
to widen the finger, and as the classical Saffman–Taylor finger selection appears to
have remained intact, one may attempt to include the inertial forces in an effective
surface tension. Indeed the modified control parameter 1/B ′ can be written as the
classical control parameter 1/B by including an effective surface tension that is of
the form

γeff = γ (1 + We∗/We∗
c), (4.5)

leading to the same data collapse as shown in figures 5 and 6(b).
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(a) (b)

Figure 7. Snapshot of a finger of λ= 0.63: (a) without inertial effects (We∗ =5 < We∗
c ,

silicon oil V02, velocity U = 5.2 cm s−1, b =0.75mm, W = 4 cm); (b) with inertial effects
(We∗ = 30 > We∗

c , silicon oil V02, velocity U = 12.5 cm s−1, b =0.75mm, W =4 cm). ×, Finger
shape (λ= 0.63) predicted without inertial effects by the theory of Pitts (1980).

5. Some theoretical elements
The experimental observations also indicate that even though the finger width in-

creases when increasing the velocity sufficiently the finger shape does not really change.
Figures 7(a) and 7(b) show finger shapes for identical 1/B ′ (within 5 %) and thus
identical width (λ= 0.63), but with (figure 7b) or without inertial effects (figure 7a).
We have compared their shapes to the prediction of Pitts (1980) for classical Saffman–
Taylor fingers not taking inertial effects into account. The experimental finger shapes
are in good agreement with this prediction. This indicates that, for the same width, the
finger shape is not modified by inertia. These observations hold for all experiments.

All these observations suggest the possibility of introducing the inertial effects in
a perturbative manner into the framework of the classical Saffman–Taylor treatment
of the viscous fingering instability. We thus choose to simply use a modified Darcy
law.

5.1. Perturbation of Darcy’s law

Modifications of Darcy’s law have already been introduced in § 2.2. We will now
consider the Euler–Darcy equation and thus a Darcy equation corrected by inertia,
in the frame of the moving finger.

One starts from (2.5) for the two-dimensional velocity field u(x, y, t) in the
laboratory frame. In the frame of the moving finger the problem is by definition
stationary. Taking u(x, y, t) = u′(x − Ut, y) + U ex , we obtain for the velocity u′(x, y)
in the frame of reference of the moving finger:

ρ

(
−αU

∂u′

∂x
+ βU

∂u′

∂x
+ βu′· ∇ u′

)
= −∇p − 12η

b2
(u′ + U ex). (5.1)

Using the same scaling as before and omitting the ∗ (dimensionless symbols) and
the prime (finger frame) for the variables, we find

Re∗
(

(β − α)
∂u
∂x

+ βu · ∇ u
)

= −∇p − u − ex . (5.2)

We assume that the flow remains a potential flow, i.e. u = ∇φ. This restriction to
potential flow without vorticity is possible as long as the boundary conditions that
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apply to the finger and the walls are not modified. If this is the case, one can write

φ = −
[
p + Re∗ [

(β − α)ux + 1
2
βu2

]
+ x + const

]
and �φ = 0. (5.3)

Assuming that along the finger and away from its tip there are no inertial effects
(the fluid is at rest in the laboratory frame, and limx→−∞ u = −ex in the finger frame)
one should choose the constant equal to Re∗(β/2 − α).

Note that in the far field, away from the finger interface, u is uniform and we
deduce from (5.3):

u = ∇φ = −∇p − 1, (5.4)

which leads to the classical Darcy law in the laboratory frame.
The mechanical equilibrium of the interface requires the balance of the

normal stress from both sides, given by (2.3): p = −γ̃ /R (R > 0), where γ̃ =

(b/W )2γ /(12ηU ) = 1/B
−1

is the dimensionless surface tension and R is the dimension-
less radius of curvature. Using this, one obtains the following boundary condition for
φ at the interface:

φΓ = −
[

− γ̃ /R + Re∗[(β − α)ux + 1
2
βu2 + β/2 − α

]
+ x

]
. (5.5)

As the normal velocity at the interface un is zero in the frame of the moving finger,
the only remaining velocity component is the tangential one ut and we can use the
notation of McLean & Saffman (1981): u = ut et = − q(cos θex + sin θey) where q

varies from 0 (at the tip of the finger) to 1 (at its side) when θ varies from −π/2 to 0.
We can thus replace u2 by q2 and −ux by q cos θ .

As q is mainly given by cos θ , one can write

φΓ = −x + γ̃ [1/R + We∗(α − β/2) sin2 θ]. (5.6)

Note that the last term is the Bernoulli correction. In a different context, potential
flows using Bernoulli’s equation (for Re → ∞) have been extensively studied in the
past (see Garabedian 1957, 1985; Vanden-Broeck 1984, 2004). These studies mainly
concern ascending bubbles (see Garabedian 1957, 1985; Vanden-Broeck 1984) or
cavitating flows around obstacles (see Vanden-Broeck 2004). However, their results
cannot be directly compared to our study.

In (5.6), according to Gondret & Rabaud (1997), Ruyer-Quil (2001) and
Plouraboue & Hinch (2002), (α − β/2) is positive, so that this correction has the
same sign as the curvature. It also vanishes at the sides of the finger. This shows that
the effect of the inertial term is very similar to that of the capillary forces: the inertial
forces should tend to increase the finger width, as was indeed observed experimentally.

Finally, rewriting (5.6), it follows that

φΓ = −x + γ̂ (θ)/R, with γ̂ (θ) = γ̃ [1 + We∗(α − β/2)R(θ) sin2 θ]. (5.7)

This equation is reminiscent of (4.5) obtained above by considering the modified
control parameter 1/B ′ with an effective surface tension.

5.2. Numerical simulations and comparison to experimental data

Of course the selection of the relative width of the finger can only be found by a
sophisticated singular perturbation analysis. However, the relative finger width can
be obtained numerically by a modification of the McLean & Saffman (1981) method.
We choose this method for a comparison with the experimental results and introduce
the correction of Ruyer-Quil (2001) in the numerics using (5.5). We corrected for the
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Figure 8. Finger width λ as a function of the classical control parameter 1/B for the
geometry with b = 0.75mm and W =4 cm and different fluids: (a) numerical simulations and
(b) comparison between simulations and experimental results, experimental data: •, V02; ×,
V05; �, V10; + V20; �, V100; numerical simulations: lines.

thin film effect in the simplest way possible: we modified the value of the surface
tension to what has been proposed by Tabeling & Libchaber (1986). For the film
thickness we used (4.2) which does not take inertia into account.

If this is done, the numerical simulations confirm the simple argument pointed out
above and show an increase of the relative finger width compared to the classical
results (see figure 8a), in agreement with the experiments. The observations from the
numerical results are:

(i) the inertial effects are stronger (i.e. appear for a smaller critical 1/B ) for less
viscous fluids as well as for larger cell thickness or for smaller cell width;

(ii) the minima of the relative width as a function of We∗ are around a unique
value of We∗

c , however the numerical value of We∗
c differs between the experiments

(≈ 15) and the simulations (≈ 2).
Comparison of the simulations and the experiments (see figure 8b) shows that they

are in qualitative agreement but that the results are not identical.
When inertial effects are present we can characterize these effects by estimating a

critical value of the control parameter 1/Bc and a critical relative width λc at the
minimum. The numerics provide a rather good estimate for λc but fail to give a
correct value for 1/Bc which is found to be smaller in the numerical simulations than
in the experiments. Another significant difference is that the increase of the λ–1/B
curve is observed to be stronger in the simulations.

However, even for the case where inertia can be neglected (for the most viscous
fluid), there is a small but significant discrepancy between the numerical simulations
and the experimental data. We believe this is due to the fact that our way of correcting
for the wetting film is too simple. As a consequence, it is clear that we cannot
expect perfect agreement between experimental data and simulations when adding
corrections due to inertia. To quantitatively account for the experimental results, one
has to go back to the three-dimensional effects of the experiment which are expected
to be important close to the finger tip over a length scale of order b. This is due to the
existence of a three-dimensional structure of the flow which cannot be ignored in the
vicinity of the finger: a film exists between the plate and the finger. Park & Homsy
(1984) and Reinelt & Saffman (1985) have shown that it is nevertheless possible to
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reduce the problem to two dimensions by modifying the boundary conditions on the
finger (see also Ben Amar & Rice 2002). However, they have also shown that reduction
to two dimensions is only possible if the parameter We = ρU 2b/γ is small. For our
problem, this is not the case and therefore a complete set of the corrected boundary
conditions must be deduced from the full three-dimensional theory of Park &
Homsy and Reinelt & Saffman incorporating inertial effects in order to resolve
the problem, which is beyond the scope of this paper.

6. Summary and conclusion
We have investigated the effect of inertia on the Saffman–Taylor instability. Inertial

effects are found to become important for fluids of low viscosity and for large plate
spacing of the Hele-Shaw cell. For these situations one observes, upon increasing the
velocity, first a classical regime with a decrease of the relative finger width and then
a second and new regime in which the finger width increases. This second regime is
due to the importance of inertia.

We introduced a modified Weber number We∗ which allowed us to explain the
crossover between the two regimes. The transition is thus given by a critical modified
Weber number We∗

c . Below We∗
c , the classical regime of decreasing finger width is of

course governed by the classical control parameter 1/B , which is a modified capillary
number. The finger width in this regime is thus given by the balance between capillary
forces, which tend to widen the finger, and viscous forces, which tend to narrow the
finger. With increasing velocity the viscous forces dominate over the capillary forces
and one observes a narrowing of the finger. For the second regime, above We∗

c , one
observes on the contrary an increase of the finger width with increasing velocity. In
this case the finger width is governed by a modified Reynolds number Re∗ and thus
by the balance between viscous forces and inertia. It turns out that inertial forces
tend to widen the finger. With increasing velocity inertia dominates the viscous forces
and one consequently observes a widening of the fingers.

We have also shown that we can define a new control parameter 1/B ′, which takes
the corrections due to inertia into account. This parameter tends towards 1/B for
low We∗ and is proportional to 1/Re∗ for large We∗. When plotting our data as a
function of this empirical parameter they collapse onto a single universal curve which
corresponds to the results for the finger width obtained for the classical Saffman–
Taylor instability.

By only taking into account a modification of Darcy’s law, some simple arguments
and numerical simulations confirm all of these observations. However, the agreement
between numerics and experiments is only qualitative. We believe this is due to the
fact that the problem is certainly three-dimensional and one must consider the full
three-dimensional theory of Park & Homsy and Reinelt & Saffman incorporating
inertial effects.

It may be interesting to investigate whether inertia modifies the tip splitting
instability observed classically for high value of the control parameter 1/B . To
do so it would be appropriate to work in an open (circular) geometry. One could then
also compare to a linear stability analysis for a planar interface when taking inertia
into account.

We thank Eric Clément, Mike Shelley and Laurent Limat for useful discussions
and José Lanuza for valuable help with the experimental set-up.
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